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ABSTRACT

We prove that the Banach spaces Ly and 1, are uniformly nonequivalent
for any p > 2. This result complements the well-known similar theorem

of Bourgain for the case p < 2.

1. Introduction

The problem of topological classification of Banach spaces has a long history.
In 1955 M. Kadec [4] proved that any two separable Banach spaces are homeo-
morphic to each other. So, the natural problem of the uniform classification of
separable Banach spaces arises.

The Banach spaces L, and 1, play a great role in functional analysis for 1 <
p < oo (see Section 2). It is clear that for p = 2, Ly and 1z, being Hilbert spaces,
are linearly isomorphic. In 1964 J. Lindenstrauss [5] proved that if p # ¢ and
max{p, g} > 2, then 1, and 1, are not uniformly homeomorphic. In 1969 P. Enflo
[3] completed this result for any p # ¢. His proof works both for L,, L, and for
1,, 1;. In 1986 Bourgain (2] proved that for p < 2, L, and 1, are not uniformly
homeomorphic.

In the present paper we complete these results by proving that 1, and L, are
uniformly nonequivalent when p > 2. I thank J. Lindenstrauss, who attracted
my attention to this problem, and Y. Benyamini and J. Donin for their invaluable
help.

* Prof. Gorelik was killed in a car accident on September 23, 1993.
Received September 9, 1993
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2. Main result

We will consider the linear space 1, of all sequences z = {x;} for which } [z;[P <
oo with the norm ||z|| = (3 |:c,~|7’)l/ P and the space L, of all classes of measurable
functions g on the closed interval [0,1] for which [|g|P < oo with the norm
ligll = ([ lgI?) /P The main result of the paper is the following

THEOREM 1: For any p > 2 the spaces L, and 1, are not uniformly homeomor-
phic.

From now on we will use the following notations. Let f: U — V be a mapping
of Banach spaces. If z € U then we denote ' = f(z). For z,y € U we denote
by xy the distance between x and y; similarly 2'y’ is a distance between points
in V.

It is known (see e.g. [1]) that every uniform homeomorphism between two
Banach spaces U — V satisfies the following condition. For any ¢ > 0 there
exists L = L(c) such that for any z,y € U

wlyl

1
. = =< —<I,
(2.1) Ty >c L<a:y<

We will call this condition the double-sided Lipshitz condition for large distances
(DLL). Hence, Theorem 1 follows from

THEOREM 2: For any p > 2 there is no DLL-homeomorphism f: 1, — L.
We will prove this theorem by contradiction. So, we suppose that there exists
a DLL-homeomorphism f: 1, — L,, and will get a contradiction.

3. Definition of parameters

Given a DLL-homeomorphism f: 1, — L,, we define the following parameters:
(1) L: L = L(1) is the Lipshitz constant for the distances, which are greater
than 1 (see (2.1)).
(2) 6: 6 > 0 is such that 6? < 1/2, and 672~ < 1/6pL?.
(3) ¢:9=067/(1+67).
(4) n: a natural number satisfying the following inequality, (1+q) > L%
(5) R=2/6.
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4. Some geometric properties of 1, and L,

Our proof of Theorem 2 has the following scheme:
Lemma 2 = Lemma 1 = Theorem 2.

In this section we formulate Lemma 1, prove the implication Lemma 1 =
Theorem 2, after it we formulate Lemma 2, and prove the second implication

Lemma 2 = Lemma 1. Lemma 2 will be proved in the next sections.

LEMMA 1: For any A, B € 1,,, such that AB > R, there exists C € 1, such that

max{A'C’, B'C'} max{AC, BC}
A'B’ ) AB
and AC,BC > 1/4- AB.

In particular we obtain

>144q,

CoRoOLLARY: For any A, B € 1,, such that AB > R, there exist C,D € 1, such
that

oD oD Ly

A'B' ~ AB ¥

and CD > 1/4- AB.

Proof: Put D= Aif A’C’ = max{A'C’, B'C'}, and put D = B otherwise. The
Corollary is proved. |

Proof of the implication Corollary = Theorem 2: Take A;, B, € 1, such
that A;B; > 4™ - R. By the corollary there exist Ag, B2 € 1, such that A;B2 >
1/4 -A1B; > 4n_1R, and

ALB,  A3B,

A8, 45 0T
Repeating this procedure n times, we find An41, Bny1 € 1p so that Apy 1By >
R, and

Any1Bnir | Ang1Bnpa
A\ B} A1 By

On the other hand, since A1 By, Ap41Bn+1 > R > 1, it follows that
A:t+lB:l+1 <L An+1Bn+1 and AllBi > AIBI/L; 8o

>(1+q)"> L%

[ /
An+1Bn+l R An+an+l

2
e g <L
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This contradiction proves the theorem. 1
The proof of Lemma 1 is based on Lemma 2. We will use the following
Definition: Let X be a Banach space, A, B € X, and let a > 0 be a constant.
Then C € X is called an a-midpoint of A and B if
max{AC,BC} < AB/2-(1+ a).

Now we can formulate

LEMMA 2: Let A, B € 1, be such that AB > R; A*, B* € L, such that AB/L <
A*B* < L-AB. Denote M C 1, the set of all 5?-midpoints of A, B, and N C L,
the set of all 26P-midpoints of A*, B*. Then f(M) ¢ N:

Proof of the implication Lemma 2 = Lemma 1: Let A, B € 1, be such that
AB > R. 1t follows from Lemma, 2 that for A* = A’ and B* = B’ there exists a
point C € 1, such that C € M, and C' ¢ N. Therefore

max{A'C’, B'C'} max{AC, BC} S 1426P 1+
AR ' AB 1+or 4

On the other hand,

min{AC, BC} > AB — max{AC, BC} > A2—B (1-67) > %

Hence, Lemma 1 follows from Lemma 2. |

Before passing to the proof of Lemma 2 in the next sections, we make some
reductions.

By standard approximation we can assume that A and B have only finitely
many nonzero coordinates, and that the function B* — A* never vanishes. By
composing f with translations in 1, and L,, we can assume B = —A and B* =
—A*. Finally, it is well known (see e.g. [7], p. 411) that since A* is never zero,
there is a linear isometry of L,, taking A* to a constant function. Composing f
with this isometry we can assume A* is itself a constant function.

5. Geometry of the subsets M Cl, and N C L,

Let h;(t) = sign sin 2iwt, j = 1,2,..., be the Rademacher functions on [0,1].
Denote by H C L, the linear subspace spanned by all the h;, j = 1,2,...
The Li-norm ||h||; and the Ly-norm ||k||, of a function h € H are equivalent
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by Khinchin’s inequality. More precisely, we have (see e.g. [6], p.66) that for
B=1/Vp+2
l|Rll2 = B[R,

for every h € H.
Denote by G C Ly, the linear subspace of infinite codimension consisting of all
functions g satisfying the following equations:

/g:O, /hg:O for any h € H.

LEMMA 3: Under the hypothesis of Lemma 2 and the subsequent reductions,
N is a subset of the tube

Tub(G,r) = {h € L, : d(h,G) < r}
with axis G and radius r = §/L% - ||A*||.

Proof: For given C € N we represent the vector C as (A + g+ h)||A*||, where A
is a constant, g € G, and h € H. Without loss of generality we can assume that
A > 0. By assumption C € N, this means that

1+ A+g+h|=]A*+C||/||A*)] <1+ 26 .

But
L+ A4+ g+h|[2[11+X+g+hlla > |1+ hll2 = (1+]IAlZ)2.
Hence
|[hll2 < 3672, and ||h|| < 367/%/8 < 3p&P/2.
Similarly

IM+A+g+R||Z|1+A+g9+hll2 2|1+ Az2=1+A
Hence, A < 26P. Thus
d(C,G) < [IA+hl} - [|A*|| < (A + [[RIDIIA%]] < (3p + 2)87/%||A%|| < 6/L* - ||A*||

by the choice of 4. |

Let V be the subspace of 1, of all sequences supported in the complement of
the finite support of the vector A.
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LEMMA 4: The set M C 1, contains the intersection of the subspace V and the
ball B(0,4 - || A]]).

Proof: The proof is evident. |

6. Topological considerations

(The essential ideas for this section are due to J. Donin.)

LEMMA 5: Let G be a subspace of a Banach space X of infinite codimension,
and let v be a map from the finite-dimensional simplex A into X. Then for every
7 > 0, there is a continuous map vi: A — X with ||yvi(z) — v(z)|| = 27 for every
z € A, and so that 71(A) N Tub(G, 1) = 0.

Proof: Let F be a finite subset of A, so that v(F) is a 7/4-net in v(A). As G is
of infinite codimension, so is sp{y(F), G} , the subspace spanned by G and v(F).
We can thus find a norm one vector z € X, whose distance from sp{y(F), G} is
more than 3/4. Define v,(z) = vy(z) + 272.

If v1(A) N Tub(G, 7) # B, choose x € A so that y(z) + 27z = g + y for some
g € G and ||y]| < 7, and choose f € F so that ||y(z) — v(f)|| < 7/4.

But then

dist(z,sp{7(F), G}) < llz — (¢ — v())/27| < lWll/27 + |}v(z) — v(H)ll/27
<(r+7/4)/2r=5/8 < 3/4

contradicting the choice of z. ]

LEMMA 6: Let V be a subspace of finite codimension in the Banach space X.
Let P be a projection from X onto V, and put F = Ker(P).

Fix 7 > 0, and put A = Bp(r), the ball of radius v in F. Then for any
continuous map y: A — X satisfying ||y(b) — b} < 7/||I — P|| for all b € A, there
is a point v € y(A)NV. (And clearly ||v|| < 27.)

Proof: By our assumption, the map ® = (I-P)oy: A — F satisfies ||®(b)—b|| <
7 for all b € A. By Brouwer’s Theorem it follows that there is a b € A so that
®(b) = 0. (Take a fixed point of ¥(z) =z — &(z): A - A.)

It follows that v = (b) € V as required. |
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Remarks: (1) The notation A = Br(7) is consistent. It is clearly homeomorphic
to a finite-dimensional simplex.

(2) We shall use the lemma when X =1,, and V is the space of all sequences
supported in the complement of some fixed finite set. In this case the cannonical
projection satisfies ||P|| = || — P|| = 1. Thus the condition of the lemma is just

|lv(8) - bl| < 7.

7. Proof of Lemma 2

Let V be as in Lemma 4, and let F be the finite-dimensional space of all
sequences supported in the support of A. By Lemma 6 (see Remark 2), if
v: A = Bp(6]j4|]) — 1, is any map with ||z — 7(z)|| < §||A]| for all z € A,
then Im~y intersects V N B(6||A]|). Hence by Lemma 4, Imy( M # @ for each
such ~.

Assume that f(M) C N. fla is a mapping of A into L,. From Lemma 3 and
Lemma 5 it follows that there exists a mapping v;: A — L, such that Imv, does
not intersect N, and for any = € A,

(7.1) lIm(z) - f(@)I| < 6-||4*(}/L* < & ||All/L.

For ¥ = f~! o4, we prove now that ||y(x) — z|| < 6]|A]| for all z € A. This
holds, because otherwise there would be such x € A that

lv(e) - =zl| 2 é||All 2 6- R/22> 1
by the choice of R, and therefore

() = F@)l = 11f o v(z) = F@)I > llv(=z) - =ll/L = 6 - |All/L,

which contradicts (7.1). Thus we proved that ||y(z) — z|| < §||A||. As noticed
above, it follows that Imvy; must intersect M. This contradicts the assumption
that f(M) C N and the contradiction proves the lemma. ]

8. Remark on the case p < 2

This technique works for p < 2 (which is, in fact, easier) too. In this case
the scheme of the proof is the following. We assume that there exists a DLL-
homeomorphism f: 1, — L,, and get a contradiction. We are interested in the
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subset M C L,, consisting of all c6%-midpoints of A, B, and N C 1, consisting
of all 2c62-midpoints of A*, B* (for a suitable ¢ = ¢(p)). N is a subset of a
small neighbourhood of the finite-dimensional linear subspace, consisting of all
sequences supported in the finite support of A* and B*. M contains the inter-
section of the ball B(6||Al|) and the infinite-dimensional subspace H. It follows
easily that f(M) ¢ N.
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