THE UNIFORM NONEQUIVALENCE OF *Lp* AND *Ip*

BY

E. GORELIK*

Department of Mathematics and Computer Science Bar-llan University, 52-900 Ramat-Gan, Israel

ABSTRACT

We prove that the Banach spaces L_p and l_p are uniformly nonequivalent for any $p > 2$. This result complements the well-known similar theorem of Bourgain for the case $p < 2$.

1. Introduction

The problem of topological classification of Banach spaces has a long history. In 1955 M. Kadec [4] proved that any two separable Banach spaces are homeomorphic to each other. So, the natural problem of the uniform classification of separable Banach spaces arises.

The Banach spaces L_p and l_p play a great role in functional analysis for $1 \leq$ $p \leq \infty$ (see Section 2). It is clear that for $p = 2$, \mathbf{L}_2 and \mathbf{l}_2 , being Hilbert spaces, are linearly isomorphic. In 1964 J. Lindenstrauss [5] proved that if $p \neq q$ and $\max\{p, q\} \geq 2$, then l_p and l_q are not uniformly homeomorphic. In 1969 P. Enflo [3] completed this result for any $p \neq q$. His proof works both for \mathbf{L}_p , \mathbf{L}_q and for l_p , l_q . In 1986 Bourgain [2] proved that for $p < 2$, L_p and l_p are not uniformly homeomorphic.

In the present paper we complete these results by proving that l_p and L_p are uniformly nonequivalent when $p > 2$. I thank J. Lindenstrauss, who attracted my attention to this problem, and Y. Benyamini and J, Donin for their invaluable help.

^{*} Prof. Gorelik was killed in a car accident on September 23, 1993. Received September 9, 1993

2. Main result

We will consider the linear space I_p of all sequences $x = \{x_i\}$ for which $\sum |x_i|^p <$ ∞ with the norm $||x|| = \left(\sum |x_i|^p\right)^{1/p}$ and the space \mathbf{L}_p of all classes of measurable functions g on the closed interval [0, 1] for which $\int |g|^p < \infty$ with the norm $||q|| = (f |g|^p)^{1/p}$. The main result of the paper is the following

THEOREM 1: For any $p > 2$ the spaces L_p and l_p are not uniformly homeomor*phic.*

From now on we will use the following notations. Let $f: U \to V$ be a mapping of Banach spaces. If $x \in U$ then we denote $x' = f(x)$. For $x, y \in U$ we denote by xy the distance between x and y; similarly $x'y'$ is a distance between points in V.

It is known (see e.g. [1]) that every uniform homeomorphism between two Banach spaces $U \rightarrow V$ satisfies the following condition. For any $c > 0$ there exists $L = L(c)$ such that for any $x, y \in U$

(2.1)
$$
xy > c \Longrightarrow \frac{1}{L} < \frac{x'y'}{xy} < L,
$$

We will call this condition the double-sided Lipshitz condition for large distances (DLL). Hence, Theorem 1 follows from

THEOREM 2: *For any* $p > 2$ *there is no DLL-homeomorphism* $f: l_p \to L_p$.

We will prove this theorem by contradiction. So, we suppose that there exists a DLL-homeomorphism $f: \mathbf{l}_p \to \mathbf{L}_p$, and will get a contradiction.

3. Definition of parameters

Given a DLL-homeomorphism $f: \mathbf{l}_p \to \mathbf{L}_p$, we define the following parameters:

- (1) L: $L = L(1)$ is the Lipshitz constant for the distances, which are greater than 1 (see (2.1)).
- (2) δ : $\delta > 0$ is such that $\delta^{p} < 1/2$, and $\delta^{p/2-1} < 1/6pL^2$.
- (3) $q: q = \frac{\delta^p}{(1 + \delta^p)}$.
- (4) n: a natural number satisfying the following inequality, $(1 + q)^n > L^2$.
- **(5) R = 2/6.**

4. Some geometric properties of \mathbf{l}_p and \mathbf{L}_p

Our proof of Theorem 2 has the following scheme:

Lemma $2 \implies$ Lemma $1 \implies$ Theorem 2.

In this section we formulate Lemma 1, prove the implication Lemma $1 \Rightarrow$ Theorem 2, after it we formulate Lemma 2, and prove the second implication **Lemma 2** \Rightarrow **Lemma 1**. Lemma 2 will be proved in the next sections.

LEMMA 1: *For any A, B* \in **l**_p, such that $AB > R$, there exists $C \in$ **l**_p, such that

$$
\frac{\max\{A'C',B'C'\}}{A'B'}:\frac{\max\{AC,BC\}}{AB} > 1 + q,
$$

and $AC, BC > 1/4 \cdot AB$.

In particular we obtain

COROLLARY: *For any A, B* \in **l**_p, *such that AB* > *R*, *there exist C*, *D* \in **l**_p, *such that*

$$
\frac{C'D'}{A'B'} > \frac{CD}{AB} \cdot (1+q),
$$

and $CD > 1/4 \cdot AB$.

Proof: Put $D = A$ if $A'C' = \max\{A'C', B'C'\}$, and put $D = B$ otherwise. The Corollary is proved.

Proof of the implication Corollary \Rightarrow *Theorem 2:* Take $A_1, B_1 \in I_p$, such that $A_1B_1 > 4^n \cdot R$. By the corollary there exist $A_2, B_2 \in I_p$, such that $A_2B_2 >$ $1/4 \cdot A_1 B_1 > 4^{n-1} R$, and

$$
\frac{A_2'B_2'}{A_1'B_1'} > \frac{A_2B_2}{A_1B_1} \cdot (1+q).
$$

Repeating this procedure *n* times, we find $A_{n+1}, B_{n+1} \in I_p$ so that $A_{n+1}B_{n+1} >$ R, and

$$
\frac{A'_{n+1}B'_{n+1}}{A'_1B'_1}:\frac{A_{n+1}B_{n+1}}{A_1B_1}>(1+q)^n>L^2.
$$

On the other hand, since A_1B_1 , $A_{n+1}B_{n+1} > R > 1$, it follows that $A'_{n+1}B'_{n+1} < L \cdot A_{n+1}B_{n+1}$ and $A'_{1}B'_{1} > A_{1}B_{1}/L$; so

$$
\frac{A'_{n+1}B'_{n+1}}{A'_1B'_1}:\frac{A_{n+1}B_{n+1}}{A_1B_1}
$$

This contradiction proves the theorem.

The proof of Lemma 1 is based on Lemma 2. We will use the following

Definition: Let X be a Banach space, $A, B \in X$, and let $\alpha > 0$ be a constant. Then $C \in X$ is called an α -midpoint of A and B if

$$
\max\{AC, BC\} < AB/2 \cdot (1 + \alpha).
$$

Now we can formulate

LEMMA 2: Let $A, B \in \mathbf{I}_p$ be such that $AB > R$; $A^*, B^* \in \mathbf{L}_p$ such that $AB/L <$ $A^*B^* < L \cdot AB$. Denote $M \subset \mathbf{l}_p$ the set of all δ^p -midpoints of A, B , and $N \subset \mathbf{L}_p$ *the set of all* $2\delta^p$ *-midpoints of A*, B*. Then* $f(M) \not\subset N$ *:*

Proof of the implication Lemma 2 \Rightarrow Lemma 1: Let $A, B \in I_p$ be such that $AB > R$. It follows from Lemma 2 that for $A^* = A'$ and $B^* = B'$ there exists a point $C \in I_p$ such that $C \in M$, and $C' \notin N$. Therefore

$$
\frac{\max\{A'C', B'C'\}}{A'B'} : \frac{\max\{AC, BC\}}{AB} > \frac{1 + 2\delta^p}{1 + \delta^p} = 1 + q.
$$

On the other hand,

$$
\min\{AC, BC\} \ge AB - \max\{AC, BC\} \ge \frac{AB}{2} \cdot (1 - \delta^p) \ge \frac{AB}{4}.
$$

Hence, Lemma 1 follows from Lemma 2.

Before passing to the proof of Lemma 2 in the next sections, we make some reductions.

By standard approximation we can assume that A and B have only finitely many nonzero coordinates, and that the function $B^* - A^*$ never vanishes. By composing f with translations in l_p and L_p , we can assume $B = -A$ and $B^* =$ $-A^*$. Finally, it is well known (see e.g. [7], p. 411) that since A^* is never zero, there is a linear isometry of \mathbf{L}_p , taking A^* to a constant function. Composing f with this isometry we can assume A^* is itself a constant function.

5. Geometry of the subsets $M \subset l_p$ and $N \subset L_p$

Let $h_j(t) = \text{sign } \sin 2^j \pi t$, $j = 1, 2, ...,$ be the Rademacher functions on [0, 1]. Denote by $H \subset L_p$ the linear subspace spanned by all the h_j , $j = 1, 2, ...$ The \mathbf{L}_2 -norm $||h||_2$ and the \mathbf{L}_p -norm $||h||_p$ of a function $h \in H$ are equivalent

by Khinchin's inequality. More precisely, we have (see e.g. [6], p.66) that for $\beta = 1/\sqrt{p+2}$

$$
||h||_2 \geq \beta \cdot ||h||_p
$$

for every $h \in H$.

Denote by $G \subset L_p$ the linear subspace of infinite codimension consisting of all functions g satisfying the following equations:

$$
\int g = 0, \quad \int hg = 0 \quad \text{ for any } h \in H.
$$

LEMMA 3: *Under the hypothesis of Lemma 2 and the subsequent reductions, N is a subset* of the *tube*

$$
\operatorname{Tub}(G, r) = \{ h \in \mathbf{L}_p : d(h, G) < r \}
$$

with axis G and radius $r = \delta/L^2 \cdot ||A^*||$ *.*

Proof: For given $C \in N$ we represent the vector C as $(\lambda + g + h)||A^*||$, where λ is a constant, $g \in G$, and $h \in H$. Without loss of generality we can assume that $\lambda \geq 0$. By assumption $C \in N$, this means that

$$
||1 + \lambda + g + h|| = ||A^* + C|| / ||A^*|| < 1 + 2\delta^p.
$$

But

$$
||1 + \lambda + g + h|| \ge ||1 + \lambda + g + h||_2 \ge ||1 + h||_2 = (1 + ||h||_2^2)^{1/2}.
$$

Hence

$$
||h||_2 < 3\delta^{p/2}
$$
, and $||h|| < 3\delta^{p/2}/\beta < 3p\delta^{p/2}$.

Similarly

$$
||1 + \lambda + g + h|| \ge ||1 + \lambda + g + h||_2 \ge ||1 + \lambda||_2 = 1 + \lambda.
$$

Hence, $\lambda < 2\delta^p$. Thus

$$
d(C, G) \le ||\lambda + h|| \cdot ||A^*|| \le (\lambda + ||h||) ||A^*|| \le (3p + 2)\delta^{p/2} ||A^*|| < \delta/L^2 \cdot ||A^*||
$$

by the choice of δ .

Let V be the subspace of \mathbf{l}_p of all sequences supported in the complement of the finite support of the vector A.

LEMMA 4: The set $M \subset l_p$ contains the intersection of the subspace V and the *ball* $\mathcal{B}(0,\delta\cdot||A||)$.

Proof: The proof is evident.

6. Topological considerations

(The essential ideas for this section are due to J. Donin.)

LEMMA 5: *Let G be a subspace of a Banach* space *X of infinite codimension,* and let γ be a map from the finite-dimensional simplex Δ into X. Then for every $\tau > 0$, there is a continuous map $\gamma_1: \Delta \to X$ with $||\gamma_1(x) - \gamma(x)|| = 2\tau$ for every $x \in \Delta$, and so that $\gamma_1(\Delta) \cap \text{Tub}(G, \tau) = \emptyset$.

Proof. Let F be a finite subset of Δ , so that $\gamma(F)$ is a $\tau/4$ -net in $\gamma(\Delta)$. As G is of infinite codimension, so is $\text{sp}\{\gamma(F), G\}$, the subspace spanned by G and $\gamma(F)$. We can thus find a norm one vector $z \in X$, whose distance from $sp{\gamma(F), G}$ is more than 3/4. Define $\gamma_1(x) = \gamma(x) + 2\tau z$.

If $\gamma_1(\Delta) \cap \text{Tub}(G, \tau) \neq \emptyset$, choose $x \in \Delta$ so that $\gamma(x) + 2\tau z = g + y$ for some $g \in G$ and $||y|| < \tau$, and choose $f \in F$ so that $||\gamma(x) - \gamma(f)|| < \tau/4$. But then

$$
dist(z, \mathrm{sp}\{\gamma(F), G\}) \le ||z - (g - \gamma(f))/2\tau|| \le ||y||/2\tau + ||\gamma(x) - \gamma(f)||/2\tau
$$

$$
\le (\tau + \tau/4)/2\tau = 5/8 < 3/4
$$

contradicting the choice of z .

LEMMA 6: *Let V be a subspace of fnite codimension in the Banach space X.* Let P be a projection from X onto V, and put $F = \text{Ker}(P)$.

Fix $\tau > 0$, and put $\Delta = \mathcal{B}_F(\tau)$, the ball of radius τ in F. Then for any *continuous map* $\gamma: \Delta \to X$ *satisfying* $||\gamma(b) - b|| \leq \tau/||I - P||$ *for all* $b \in \Delta$ *, there is a point* $v \in \gamma(\Delta) \cap V$ *. (And clearly* $||v|| \leq 2\tau$ *.)*

Proof: By our assumption, the map $\Phi = (I-P)\circ \gamma: \Delta \to F$ satisfies $||\Phi(b)-b|| \leq$ τ for all $b \in \Delta$. By Brouwer's Theorem it follows that there is a $b \in \Delta$ so that $\Phi(b) = 0$. (Take a fixed point of $\vartheta(x) = x - \Phi(x): \Delta \to \Delta$.)

It follows that $v = \gamma(b) \in V$ as required.

Remarks: (1) The notation $\Delta = \mathcal{B}_F(\tau)$ is consistent. It is clearly homeomorphic to a finite-dimensional simplex.

(2) We shall use the lemma when $X = l_p$, and V is the space of all sequences supported in the complement of some fixed finite set. In this case the cannonical projection satisfies $||P|| = ||I - P|| = 1$. Thus the condition of the lemma is just $||\gamma(b) - b|| \leq \tau.$

7. Proof of Lemma 2

Let V be as in Lemma 4, and let F be the finite-dimensional space of all sequences supported in the support of A . By Lemma 6 (see Remark 2), if $\gamma: \Delta = \mathcal{B}_F(\delta||A||) \rightarrow l_p$ is any map with $||x - \gamma(x)|| \leq \delta||A||$ for all $x \in \Delta$, then Im γ intersects $V \cap \mathcal{B}(\delta||A||)$. Hence by Lemma 4, Im $\gamma \cap M \neq \emptyset$ for each such γ .

Assume that $f(M) \subset N$. $f|_{\Delta}$ is a mapping of Δ into \mathbf{L}_p . From Lemma 3 and Lemma 5 it follows that there exists a mapping $\gamma_1: \Delta \to L_p$ such that Im γ_1 does not intersect N, and for any $x \in \Delta$,

(7.1)
$$
||\gamma_1(x) - f(x)|| < \delta \cdot ||A^*|| / L^2 < \delta \cdot ||A|| / L.
$$

For $\gamma = f^{-1} \circ \gamma_1$ we prove now that $||\gamma(x) - x|| < \delta ||A||$ for all $x \in \Delta$. This holds, because otherwise there would be such $x \in \Delta$ that

$$
||\gamma(x) - x|| \ge \delta ||A|| \ge \delta \cdot R/2 \ge 1
$$

by the choice of R , and therefore

$$
||\gamma_1(x) - f(x)|| = ||f \circ \gamma(x) - f(x)|| > ||\gamma(x) - x||/L \ge \delta \cdot ||A||/L,
$$

which contradicts (7.1). Thus we proved that $||\gamma(x) - x|| < \delta ||A||$. As noticed above, it follows that $\text{Im}\gamma_1$ must intersect M. This contradicts the assumption that $f(M) \subset N$ and the contradiction proves the lemma.

8. Remark on the case p < 2

This technique works for p < 2 (which is, in fact, easier) too. In this case the scheme of the proof is the following. We assume that there exists a DLLhomeomorphism $f: \mathbf{l}_p \to \mathbf{L}_p$, and get a contradiction. We are interested in the subset $M \subset \mathbf{L}_p$, consisting of all $c\delta^2$ -midpoints of A, B, and $N \subset \mathbf{l}_p$, consisting of all $2c\delta^2$ -midpoints of A^* , B^* (for a suitable $c = c(p)$). N is a subset of a small neighbourhood of the finite-dimensional linear subspace, consisting of all sequences supported in the finite support of A^* and B^* . M contains the intersection of the ball $\mathcal{B}(\delta||A||)$ and the infinite-dimensional subspace H. It follows easily that $f(M) \not\subset N$.

References

- [1] Y. Benyamini, *The uniform classification of Banach spaces,* Longhorn notes, Univ. of Texas, Austin, 1984-1985, 15-39.
- [2] J. Bourgain, *Remarks on the extensions of Lipshitz maps defined on discrete sets and uniform homeomorphisms,* Lecture Notes in Mathematics 1267 (1987), 157- 167.
- [3] P. Enflo, *On the non-existence of uniform homeomorphisms between Lp-spaces,* Arkiv fiir Mathematik 8 (1969), 103-105.
- [4] M. Kadec, *On topological equivalence of uniformly convex spaces,* Uspehi Mat. Nauk 10 (1955) (in Russian).
- [5] J. Lindeustrauss, *On nonlinear projections in Banach spaces,* Michigan Math. J. 11 (1964), 263-287.
- [6] J. Lindeustrauss and L. Tzafriri, *Classical Banach Spaces,* Vol. I, *Sequence Spaces,* Springer, Berlin, 1977.
- [7] S. Rolewicz, *Metric Linear Spaces,* D. Riedel Publishing Company, Dordrecht, Boston Lancastar, 1985.