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ABSTRACT 

We prove tha t  the Banach spaces Lp and lp are uniformly nonequivalent 

for any p > 2. This result complements the well-known similar theorem 

of Bourgain for the case p < 2. 

1. I n t r o d u c t i o n  

The problem of topological classification of Banach spaces has a long history. 

In 1955 M. Kadec [4] proved that  any two separable Banach spaces are homeo- 

morphic to each other. So, the natural problem of the uniform classification of 

separable Banach spaces arises. 

The Banach spaces Lp and lp play a great role in functional analysis for 1 _< 

p < c~ (see Section 2). It is clear that  for p = 2, L2 and 12, being Hilbert spaces, 

are linearly isomorphic. In 1964 J. Lindenstrauss [5] proved that  if p ¢ q and 

max{p, q} _ 2, then lp and lq are not uniformly homeomorphic. In 1969 P. Enflo 

[3] completed this result for any p ¢ q. His proof works both for Lp, Lq and for 

lp, lq. In 1986 Bourgain [2] proved that for p < 2, Lp and lp are not uniformly 

homeomorphic. 

In the present paper we complete these results by proving that  lp and Lp are 

uniformly nonequivalent when p > 2. I thank J. Lindenstrauss, who attracted 

my attention to this problem, and Y. Benyamini and J, Donin for their invaluable 

help. 

* Prof. Gorelik was killed in a car accident on September 23, 1993. 
Received September 9, 1993 
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2. M a i n  r e su l t  

We will consider the linear space I T of all sequences x = {xi} for which ~ ]x~] p < 

oo with the norm]lx]] = ()-~ ]xiIT) 1/T and the space L T of all classes of measurable 

functions g on the closed interval [0, 1] for which f ]g]P < c~ with the norm 

IIgl[-- ( f  ]g]T) 1/T. The main result of the paper is the following 

THEOREM 1: For any p > 2 the spaces L T and lp are not uniformly homeomor- 

phic. 

From now on we will use the following notations. Let f :  U ~ V be a mapping 

of Banach spaces. If x 6 U then we denote x'  = f (x ) .  For x, y 6 U we denote 

by xy the distance between x and y; similarly x'y'  is a distance between points 

in V. 

It is known (see e.g. [1]) that  every uniform homeomorphism between two 

Banach spaces U ~ V satisfies the following condition. For any c > 0 there 

exists L = L(c) such that  for any x, y 6 U 

1 x'y'  
(2.1) xy > c ~ -~ < xy < L, 

We will call this condition the double-sided Lipshitz condition for large distances 

(DLL). Hence, Theorem 1 follows from 

THEOREM 2: For any p > 2 there is no DLL-homeomorphism f: 1T --+ L v. 

We will prove this theorem by contradiction. So, we suppose that  there exists 

a DLL-homeomorphism f :  l T --+ L T, and will get a contradiction. 

3. Definit ion of  parameters 

Given a DLL-homeomorphism f :  lp ~ Lp, we define the following parameters: 

(1) L: L = L(1) is the Lipshitz constant for the distances, which are greater 

than 1 (see (2.1)). 

(2) ~: ~f > 0 is such that  6 p < 1/2, and 5 p/2-1 < 1/6pL 2. 

(3) q: q =  p/(1 + 

(4) n: a natural number satisfying the following inequality, (1 + q)" > L 2. 

(5) R = 2/6.  



Vol. 87, 1994 N O N E Q U I V A L E N C E  OF  Lp AND lp 3 

4. Some geome t r i c  p rope r t i e s  of  lp a n d  Lp 

Our proof of Theorem 2 has the following scheme: 

L e m m a  2 ==:> L e m m a  1 ===~ T h e o r e m  2. 

In this section we formulate Lemma 1, prove the implication L e m m a  1 =~ 

T h e o r e m  2, after it we formulate Lemma 2, and prove the second implication 

L e m m a  2 => L e m m a  1. Lemma 2 will be proved in the next sections. 

LEMMA 1: For any A , B  6 lp, such that A B  > R, there exists C 6 lp, such that 

max{A'C' ,  B 'C '}  . max{AC,  B C }  
> l + q ,  

AIB I A B  

and AC, B C  > 1/4.  AB.  

In particular we obtain 

COROLLARY: For any A, B 6 lp, such that A B  > R, there exist C, D 6 lp, such 

that 
C' D' C D 
A,B---- 7 > ~--~. (1 + q), 

and CD > 1/4- AB.  

Proo~ Put D = A if A'C'  = max{A'C',  B'C'},  and put D = B otherwise. The 

Corollary is proved. 1 

Proof of the implication Coro l l a ry  =~ T h e o r e m  2: Take A1, B1 6 lp, such 

that  A1B1 > 4" • R. By the corollary there exist A2, B2 6 lp, such that  A2B2 > 

1/4.  A1B1 > 4" - lR ,  and 

' ' A2B2 A2B2 > - - .  (1 + q). 
A'IB~I AIB1 

Repeating this procedure n times, we find A,+I ,  B ,+I  6 lp so that  A , + I B , + I  > 

R, and 
A~+IB'n+I . A , + I B , + I  > ( 1 +  q)" > L 2. ! ! 

AIB1 A1B1 

On the other hand, since A1B1, An+IB~+I > R > 1, it follows that  

I I , I A IB1 /L;  A . + I B . +  1 < L .  A . + I B . + I  and A I B  1 > s o  

A' B'  . -+1 -+1 A , + I B , + I  < L 2. 
l l AIB 1 AIBI 
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This contradiction proves the theorem. | 

The proof of Lemma 1 is based on Lemma 2. We will use the following 

Definition: Let X be a Banach space, A, B • X, and let a > 0 be a constant. 

Then C E X is called an a - m i d p o i n t  o f  A a n d  B if 

max{AC, BC} < A B / 2 .  (1 + c~). 

Now we can formulate 

LEMMA 2: Let A, B • lp be such that AB  > R; A*, B* • L v such that A B / L  < 

A'B* < L .  AB. Denote M C l p  the set of all 6P-midpoints of A, B, and N C Lp 

the set of all 2~fP-midpoints of A*, B*. Then f ( M )  ~_ N: 

Proof of the implication L e m m a  2 =~ L e m m a  1: Let A, B • lp be such that 

A B  > R. It follows from Lemma 2 that  for A* = A' and B* = B'  there exists a 

point C E lp such that  C • M, and C' ~ N. Therefore 

max{A'C', B'C'} max{AC, BC} 1 + 26 v 
: > - - = l + q .  

AIB ' AB  1 + ~p 

On the other hand, 

min{AC, BC} > A S  - max{AC, BC} > ~B_. (1 - 6p) 
A__~B > 

- - - 4 

Hence, Lemma 1 follows from Lemma 2. | 

Before passing to the proof of Lemma 2 in the next sections, we make some 

reductions. 

By standard approximation we can assume that  A and B have only finitely 

many nonzero coordinates, and that the function B* - A* never vanishes. By 

composing f with translations in lp and Lp, we can assume B = - A  and B* = 

-A* .  Finally, it is well known (see e.g. [7], p. 411) that  since A* is never zero, 

there is a linear isometry of Lp, taking A* to a constant function. Composing f 

with this isometry we can assume A* is itself a constant function. 

5. Geometry  of  the  subsets  M C lp and N C Lp 

Let hi(t) = sign sin2JTrt, j = 1,2, ..., be the Rademacher functions on [0, 1]. 

Denote by H C Lp the linear subspace spanned by all the hi, j = 1,2, .... 

The L2-norm IIhll2 and the Lp-norm Ilhl]p of a function h • H are equivalent 
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by Khinchin's inequality. 

= I / V ~  + 2 

for every h E H. 

NONEQUIVALENCE OF Lp AND lp 

More precisely, we have (see e.g. 

Ilhll~ > ,~" Ilhllp 

5 

[6], p.66) that for 

Denote by G C Lp the linear subspace of infinite codimension consisting of all 

functions 9 satisfying the following equations: 

f g = O, f hg = O for any h E H. 

LEMMA 3: Under the hypothesis of Lemma 2 and the subsequent reductions, 

N is a subset of the tube 

Tub(G,r )  = {h E Lp:  d(h,G) < r} 

with axis G and radius r = 5/L 2. [[A*[]. 

Proo~ For given C E N we represent the vector C as (A + 9 + h)liA*[[, where A 

is a constant, g E G, and h E H. Without loss of generality we can assume that 

A _> 0. By assumption C E N, this means that 

I[1 + A + g + h H = [[A* + C[I/[[A*[I < 1 + 25 p . 

But 

Hence 

Similarly 

II1 + ,~ + g + hll > I11 + ,~ + g + hll~ > II1 + hl12 = (1 + Ilhll~i ~/2 . 

Ilhl12 < 35 p/2, and Ilhll < 36p/2/~ < 3P 5p/2. 

Ill + A + g +  h]l > ]]1 + A + g +  hIl 2 _ ]11 + A1]2 = I + A .  

Hence, A < 25 p. Thus 

d(C,G) < ]IA + hil. ]IA*]] _< (A + []hil)iiA*l] <_ (3p+ 2)Tp/2[IA*I] < 6/L 2. ]IA*]I 

by the choice of 6. I 

Let V be the subspace of lp of all sequences supported in the complement of 

the finite support of the vector A. 
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LEMMA 4: The  set M C 1p contains the intersection of  the subspace V and the 

ball B(0,~. IIA}I). 

Proof'. The proof is evident. | 

6. Topo log ica l  c o n s i d e r a t i o n s  

(The essential ideas for this section are due to J. Donin.) 

LEMMA 5: Let  G be a subspace o f  a Banach space X o f  infinite codimension, 

and let 7 be a map from the finite-dimensional s implex  A into X .  Then  for every 

T > O, there is a continuous m a p  71: A -+ X with 113~l(x) - 3~(x)[I = 2r for every 

x • A and so that  "yl(A) n Tub(G, T) = @. 

Proof." Let F be a finite subset of A, so that 7 (F)  is a ~-/4-net in "y(A). As G is 

of infinite codimension, so is sp{3'(F), G} ,  the subspace spanned by G and "r(F). 

We can thus find a norm one vector z • X,  whose distance from sp{'r(F),  G} is 

m o r e  than 3/4. Define "/x(X) = "/(X) "4- 2TZ. 

If 71(A) N Tub(G,T) # $, choose x • A so that 7(x) + 2TZ = g + y for some 

g • G and IlY][ < T, and choose f • F so that 117(x) - 7(f)[[ < T/4. 

But then 

dist(z, sp{v(F),  G}) < }lz - (g - 7(f))/2T]] < ][y[]/2v + ][7(x) - 7 ( f ) [ ] /2 r  

< (T + 7"/4)/2~- = 5/8 < 3/4 

contradicting the choice of z. | 

LEMMA 6: Le t  V be a subspace o f  f n i t e  codimension in the Banach space X .  

Le t  P be a projection from X onto V,  and pu t  F = Ker(P).  

Fix  ~ > O, and pu t  A = BF(v) ,  the ball o f  radius r in F.  Then for any 

continuous map 7: A -* X satisfying [[7(b) - b[I < r / [ [ I  - P[I for all b • A,  there 

is a point  v • 7(A) ¢~ V.  (And  clearly [Ivll < 2~'.) 

Proof'. By our assumption, the map ~ = (l-P)oT: A ~ F satisfies l[+(b)-bll _< 
~- for all b E A. By Brouwer's Theorem it follows that there is a b E A so that 

¢(b) = 0. (Take a fixed point of O(x) = x - q~(x): A - ,  A.) 

It follows that v = "r(b) E V as required. | 
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Remarks: (1) The notation A = BF(T) is consistent. It is clearly homeomorphic 

to a finite-dimensional simplex. 

(2) We shall use the lemma when X = lp, and V is the space of all sequences 

supported in the complement of some fixed finite set. In this case the cannonical 

projection satisfies [IP[I = []I - PI[ = 1. Thus the condition of the lemma is just 

[[7(b) - b[[ < r. 

7. P r o o f  o f  L e m m a  2 

Let V be as in Lemma 4, and let F be the finite-dimensional space of all 

sequences supported in the support of A. By Lemma 6 (see Remark 2), if 

7: A = BF(6[[A[[) --~ lp is any map with [Ix - 7(x)[[ _< 6[[A[[ for all x E A, 

then Im7 intersects V N B(6[]A]I ). Hence by Lemma 4, I m T N M  ¢ 0 for each 

such 7. 

Assume that f ( M )  C N. f[A is a mapping of A into Lp. From Lemma 3 and 

Lemma 5 it follows that there exists a mapping 71: A ~ Lp such that  Im71 does 

not intersect N, and for any x E A, 

(7.1) 1171(X) --  f(x)[I < 5. [[A*][/L 2 < 5. [[A[I/L. 

F o r  7 ---- f - 1  o 71 w e  prove now that  [[7(x) - x[[ < 61[A][ for all x E A. This 

holds, because otherwise there would be such x E A that 

[ [7(x)-  x[[ > 6[IA[[ > 5. R/2 >_ 1 

by the choice of R, and therefore 

[171(x)- f(x)l[ = [If ° 7 ( x ) -  f(x)[[ > [ [7(x)-  xll/L >_ 6. NAIl~L, 

which contradicts (7.1). Thus we proved that  H7(x) - x[[ < 6[[A H. As noticed 

above, it follows that  Im71 must intersect M. This contradicts t he  assumption 

that  f ( M )  C N and the contradiction proves the lemma. | 

8. R e m a r k  on the  case  p < 2 

This technique works for p < 2 (which is, in fact, easier) too. In this case 

the scheme of the proof is the following. We assume that there exists a DLL- 

homeomorphism f:  lp --, Lp, and get a contradiction. We are interested in the 
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subset M c Lp, consisting of all c~2-midpoints of A, B, and N C Iv, consisting 

of all 2c/52-midpoints of A*,B* (for a suitable c = c(p)). N is a subset of a 

small neighbourhood of the finite-dimensional linear subspace, consisting of all 

sequences supported in the finite support of A* and B*. M contains the inter- 

section of the ball B(~I[AII ) and the infinite-dimensional subspace H. It follows 

easily that  f ( M )  q~ N .  
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